
 
Interim report 

 
 
 

Software development for electron cooling calculation 
 
 

The code development in the frame of Attachment#2 
 

I.Meshkov, A.Smirnov, A.Sidorin, G.Trubnikov, 
JINR, Dubna, Russia 

 
January 31, 2005 

 
 
 
 
Abstract 
 
The report describes modifications in the BETACOOL code developed during the first stage of the 
work according to the Attachment#2 to the Agreement on a Software Development for Electron 
cooling Calculation. The purpose of modifications was to improve models for Intrabeam Scattering 
(IBS) simulation, to develop numerical procedures for beam-beam parameter evaluation, to provide 
simulation of the electron cooling using results of numerical calculation of the friction force. At this 
stage of the work a version of the BETACOOL program for UNIX operation system was prepared 
and tested. The procedures required for integration of the BETACOOL algorithms into Unified 
Accelerator Library (UAL) were prepared. Required modifications of interface part of the program 
were performed. New model of electron bunch was introduced and some modifications in the code 
related to the luminosity and IBS calculation were done.  
 



Introduction 
 
Within the framework of the Attachment#2 JINR is obligated to carry out software development, 
provide a manual with a complete description of the code and perform numerical simulation required 
to compare prediction of different models of general effects. General goals of new software 
development are  
- to perform simulations of the ion distribution function evolution in time using real electron 
distribution function calculated with external program,  
- to improve the “core – tail” model of intrabeam scattering process simulation on the basis of theory 
by G.Parzen,  
- to perform simulations of intrabeam scattering at coupled transverse motion of the ions, 
- to perform benchmarking of the UNIX version of the program,  
- to prepare a version of the program for multi processor calculations, 
- to provide intrabeam scattering growth rate calculation using Molecular Dynamics technique at 
different ion distribution functions, 
- to integrate the BETACOOL algorithms into ion dynamics simulation with UAL, 
- to begin simulations using results of numerical calculation of the electron cooling friction force 
obtained with another programs, 
- to develop numerical procedures for beam-beam parameter evaluation and include diffusion due to 
beam-beam effect into simulations.  
 
It was planned to carry out the work in two stages. Each of them includes the code development and 
integration of BETACOOL algorithms into UAL (both further development and UAL integration are 
provided in parallel).  
 
This report describes results of the first stage of the work during which the following code 
development was performed: 
 
1. 
1.1. Improvement of the “core – tail” model of IBS simulation on the basis of bi-Gaussion 
approximation of the ion distribution function. 
1.2. Improvement of algorithms for luminosity calculation and development of the electron beam 
model. 
1.3. Preparation the procedures and algorithms for simulation of the cooling process using numerical 
results of the friction force calculation. 
1.4. Development of the algorithms for beam-beam parameter calculation and preparation for 
simulation of diffusion due to beam-beam effect. 
 
2.  
2.1 Preparation and benchmarking of UNIX version of BETACOOL. 
2.2. Compiling the BETACOOL program as a library of procedures, preparation of required adapter 
procedures for integration of BETACOOL under UAL framework. 
2.3. Comparison of the intrabeam scattering simulations in the frame of Model Beam algorithm and 
tracking based on Molecular Dynamics technique. 
2.4. Testing and benchmarking of major cooling models under UAL. 
 



In this report we present general results of the code modification. The development of the algorithms 
for luminosity calculation is related to introduction of a model of hour-glass effect estimates using 
Model Beam (MB) algorithm, and it will be described in detail in the final report. The electron 
cooling simulation was modified in order to permit input of the parameters of electron distribution 
function in the form of the electron bunch emittance and momentum spread. New model of the 
electron beam “uniform bunch” was developed in addition to Gaussian bunch and Gaussian cylinder 
to cover all typical electron distributions in the co-ordinate space. To support all the models the 
required modifications in input file and interface part of the program were done. In Fig. 1 an 
example of new visual forms in the interface dedicated to input of electron beam model parameters 
is presented. The input parameters for the uniform bunch model are the following: the bunch 
dimensions in the transverse planes (the model presumes uniform density in the transverse direction 
and Gaussian distribution in the longitudinal degree of freedom), rms bunch length, distance in 
longitudinal direction between electron and ion bunch centres and number of electrons in the bunch. 
The other forms containing parameters for electron cooling simulation were rebuilt in accordance 
with the electron cooling model described in [1]. The modifications of the electron cooling are aimed 
to provide the simulation of the cooling process using real electron distribution at the second stage of 
the work and their detailed description will be one of the topics of the final report. 
 

 
Fig. 1. New form for choice of the electron beam model. 



 
Fig. 2. The form for input the electron bunch parameters at uniform bunch model. 

 
The developed algorithms for beam-beam parameter calculation, the procedures and algorithms for 
simulation of the cooling process using numerical results of the friction force calculation, description 
of the “core-tail” model using bi-Gaussian approximation of the ion distribution function, results of 
preparation and benchmarking of UNIX version and integration of BETACOOL under UAL 
framework are presented in the independent parts of this report. 



1. Beam-beam parameter calculation 
 
Diffusion power due to beam-beam interaction in the collision point is calculated as a function of 
beam-beam parameter which has a meaning of linear part of betatron tune shift due to beam-beam 
collision. As a first step in beam-beam effect simulation a few algorithms for beam-beam parameter 
calculation were developed and tested in the BETACOOL code. In this part the analytical theory and 
different numerical algorithms for the beam-beam parameter calculation are described. 
 
1.1. Analytical formulae for beam-beam parameter 
 
We start consideration of beam-beam effects with calculation of an increment of transverse particle 
momentum after crossing the opposite bunch (see Fig. 1.1). Consider "strong-weak" approximation 
to beam-beam interaction. In this model it is assumed that particles of a weak-beam (index 2) are 
influenced by a strong electromagnetic field of the opposite bunch (index 1), while the strong bunch 
does not feel any field from the weak bunch.  
 

yB  

0 
c2β

r
 

c1β
r

y 

z 

x 

 

yσ

xσ

zσθB

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.1. Interaction of test particle with strong opposite bunch 
 
Assume that opposite bunch with  particles has the Gaussian space charge density distribution 
with rms bunch size 

1N

xσ , yσ , zσ : 
 

 ( )
( )

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−−−= 2

z

2
1

2
y

2

2
x

2

zyx
2/3

11
1 2

tvz
2
y

2
xexp

2
Nqt,v,z,y,x

σσσσσσπ
ρ . (1.1) 

 
Let us come to moving frame of coordinates (noted as prime coordinate system). Longitudinal 
position in moving frame is 
 
 ( )tvzz 1−=′ γ .  (1.2) 
 
In the moving frame the space charge density is 



 

 ( )
( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ ′
−−−=′′

22
z

2

2
y

2

2
x

2

zyx
2/3

11

2
z

2
y

2
xexp

2
Nqz,y,x

γσσσγσσσπ
ρ . (1.3) 

 
Electrostatic potential of the Gaussian bunch is: 
 

 ( )
( ) ( ) ( )
( ) ( ) ( )

dw
w2w2w2

w2
z

w2
y

w2
xexp

4
Nq

z,y,xU
0 22

z
2
y

2
x

22
z

2

2
y

2

2
x

2

0
2/3
11 ∫

∞

+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

′
−

+
−

+
−

=′′

γσσσ

γσσσ

επ
. (1.4) 

 
Transversal components of electrostatic field in the self frame are attained by differentiation of 
potential (1.4) , x/UEx ∂′−∂=′ y/UE y ∂′−∂=′ : 
 

 
( ) ( )

( )
( )

( ) ( ) ( )
dw

w2w2w2

w2
tvz

w2
y

w2
xexp

2
Nq

E
0

22
z

2
y

2/32
x

22
z

2
1

2

2
y

2

2
x

2

0
2/3
11

x ∫
∞

+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

−
+

−
+

−

−=
γσσσ

γσ
γ

σσ

επ
γ

, (1.5) 

 
with analogous expression for  component. Moving bunch of charged particles creates magnetic 
field (see Fig. 1.1) 

yE

 

 
c

E
B y

1x β−= , 
c

E
B x

1y β−=  (1.6) 

 
Equations of transverse test particle motion are 
 

 ( )[ ] ( )21x2y2x2
x 1EqBvEq

dt
dp

ββ+=−−=  , (1.7) 

 ( )[ ] ( )21y2x2y2
y 1EqBvEq

dt
dp

ββ+=−−=  . 

 
To define a change of particle momentum after crossing an opposite bunch, equations (1.7) have to 
be integrated along the time of integration. Assume that particle position and Lorentz force are not 
changed during test particle crosses the opposite bunch (thin lens approximation). Longitudinal 
equation of motion of test particle tvz 2−=  has to be substituted into expression for field (1.5). In 
the adopted approximations the change of transverse particle momentum is 



 ( )
( )

( ) ( )
( ) ( )

dw
w2w2

w2
y

w2
xexp

x
vv2

)1(NqqdtE1qp
0

2
y

2/32
x

2
y

2

2
x

2

220
2/3

21121
x212x ∫∫

∞∞

∞− ++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
−

−
+

−=+=
σσ

σσ

επ
ββ

ββ∆ , (1.8) 

 
similar for yp∆ . Consider linear approximation to increment of particle momentum. Integral in Eq. 
(1.8) can be evaluated analytically: 
 

 
( ) ( )

( ) ( ) ( ) ( ) ( )yxxyxyx

yx

ww
dwdw

ww

w
y

w
x

σσσσσσσ

σσ

+
=

++
≈

++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
−

∫∫
∞∞ 1

2222

22
exp

0
22/32

0
22/32

2

2

2

2

. (1.9) 

 
Therefore, linear approximation to increment of particle momentum is 
 

 
( )

( ) ( ) xNqqp
yxx

x σσσββπε
ββ
++

+
−=∆

120

21121

2
1 . (1.10) 

 
Let us introduce the value of beta-function at the interaction point , . Then the change of slope 
of particle trajectory in linear approximation can be written as follow: 

*
xβ

*
yβ

 

x
p
p

dz
dx

x

x

z

x
*4

β
ξ

π=
∆

=∆ , y
p
p

dz
dy

y

y

z

y
*4

β
ξ

π=
∆

=∆  , 

 
where xξ , yξ  are beam-beam parameters, which have a meaning of linear part of betatron tune shift 
due to beam-beam collision: 
 

( )
( ) ( )yxx

x
x cm

qqN
σσσβββγ

ββ
πεπ

β
ξ

++
+

=
21

44 2122

21
2

20

21
*

1  , 

 

 
( )

( ) ( )yxy

y
y cm

qqN
σσσβββγ

ββ
πεπ

β
ξ

++
+

=
21

44 2122

21
2

20

21
*

1 . (1.11) 

 
In the case of arbitrary density distribution in the opposite bunch the beam-beam parameters can be 
calculated in accordance with the definition: 
 

x
p

p
x

x
z

x
x

∆
=

→0

*

lim
4π
β

ξ . 

 
The momentum variation is calculated with the same formula (1.8) 



 

( ) ∫
∞

∞−

+=∆ dtEqp xx 212 1 ββ , 

 
but the electric field component is calculated as a solution of Poisson equation at given distribution 
shape. For y direction the formulae are similar. 
 
The other way is to use the same formulae (1.11) but to calculate the beam size as dimensions of the 
region containing given percent of particles or as a Full Width on Half Maximum (FWHM) of the 
beam distribution in co-ordinate space. In this case the formulae (1.11) have to contain additional 
normalizing factor, which provides coincidence of the different formulae in the case of Gaussian 
distribution. 
 

For a bunch of a round shape of cross-section ( xσ ,= yσ =σ ) the term 2πσ
N  can be interpreted as a 

particle local density in the centre of the bunch integrated along z co-ordinate. Such approach 
permits to calculate the beam-beam parameter without solution of Poisson equation. At the current 
stage of the software development the algorithm for beam-beam parameter calculation on the basis 
of different emittance definition and local density evaluation are realized. 
 
1.2. Numerical algorithms for beam-beam parameter calculation 
 
For gold-gold collisions at RHIC the beam-beam parameter is calculated for a collision of two 
identical bunches. In the frame of Rms dynamics algorithm the analytical formulae (1.11) for beam-
beam parameters can be rewritten in the following form: 
 

 ( )
( )
γβ
β

σσπσ
β

ξ
2*

2

22 1
4

+
+

=
yxx

x
x

N
Amc

eZ , (1.12) 

 

 ( )
( )
γβ
β

σσπσ
β

ξ
2*

2

22 1
4

+
+

=
yxy

y
y

N

Amc
eZ . (1.13) 

 
here mc2 = 932 MeV is nucleon rest energy, A, Z are the ion atomic and charge numbers, N is the ion 
number, β, γ are relativistic parameters which are equal for both bunches. The rms beam dimensions 
- σx,y – are calculated from the beam rms emittance under assumption that the dispersion and alpha 
functions in the collision point are equal to zero: 
 
 *

,,, yxyxyx βεσ = . (1.14) 
 
In the frame of Model Beam algorithm the beam dimensions can be calculated in accordance with 
different emittance definitions or the formulae (1.12, 1.13) can be rewritten using local particle 
density in the central part of the bunch.  
 



When the emittance is calculated from the model particle array as statistic rms values the beam-
beam parameter is calculated using the same formulae (1.14, 1.12, 1.13).  
 
At the beam dimensions definition via FWHM of the model particle distribution the beam-beam 
parameter in each plane is calculated using the particle number inside the FWHM. For this in the 
formulae (1.12, 1.13) instead of the ion number N one uses the value 
 

 
MB

yxFWHM
yx N

NN
N ,,

, = , (1.15) 

 
where NFWHM is the model particle number inside the area corresponded to FWHM beam dimension 
in the corresponding plane, NMB is the total particle number in the model beam. 
 
When the emittance is defined as a square of ellipse containing given percent of the ions, the beam 
rms dimensions for the formulae (1.12, 1.13) is calculated with the normalization factor 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

η

βε
σ η

1001
1ln2

*

. (1.16) 

 
where η is the percent of particles using for emittance definition. At Gaussian distribution the 
normalization (1.16) provides independence of the beam-beam parameter on the emittance 
definition. 
 
The beam-beam parameter can be calculated also via local density of the model particles in 
accordance with the formula: 
 

 ( )
γβ
ββ

ρξ
2*

,
2

22

,
1

4
+

=
MB

yx
yx N

N

Amc
eZ , (1.17) 

 
where ρ is the model particle local density in cm-2. The local density is calculated along the 
trajectory of the ion, located at the equilibrium orbit in the center of the bunch. Algorithm of the 
local density calculation is the following: 
 
- for each model particle its distance from the equilibrium orbit in radial direction is calculated in 
accordance with 
 
 22

iii yxr −= , (1.18) 
 
- from the obtained array one choices Ncount ions having minimum distance from the equilibrium 
orbit, Ncount is input parameter for the algorithm (Fig. 1.3), 
 
- mean square distance of the ion from axis is calculated 



 

 
count

N

i
i

N

r
r

count

∑
== 1

2
min,

2  (1.19) 

 
- finally, the local density is calculated as 
 

 
22

1
r

Ncount

π
ρ = . (1.20) 

 
The multiplier ½ provides equivalence of the formula (1.17) to formulae (1.12, 1.13) in the case of 
Gaussian distribution. The described algorithm is similar to algorithm for luminosity calculation via 
local ion density. 
 
1.3. Interface description and preliminary results of benchmarking 
 
The beam-beam parameter is calculated during dynamics simulation in the case when the effect 
"Collision Point" is active. Correspondingly all input parameters in the BOLIDE interface are 
located in the form "Effects | Collision Point" in additional tab sheet (Fig. 1.2). For calculation via 
local density the particle number Ncount is the same as for luminosity calculation via local density 
(Fig. 1.3). 
 

 
Fig. 1.2. Tab sheet for choice of the model for beam-beam parameter calculation in the frame of 
Model Beam algorithm. The beam-beam parameter is calculated via local density when the check-
box "Via local density" is checked, in the opposite case the calculations are provided in accordance 
with chosen emittance definition. 
 
Example of the beam-beam parameter calculations using different algorithms are listed in the 
Table 1.1. The beam parameters at the calculations were: horizontal and vertical emittances are 
2.5⋅10-8 π⋅m⋅rad, momentum spread 0.001 and the ion number is 109. Number of the model particles 
is 2000. Maximum fluctuation of the result takes a place for calculations via local density due to 



pure statistics: rms spread of the beam-beam parameter value from realization to realization is about 

6%, that is approximately equal to 
countN
1 . In the other cases the spread of results is determined by 

the model particle number and it is about 1 – 2 %. 
 

 
Fig. 1.3. The number of ions for beam-beam parameter calculation via local density Ncount is input in 
the counter "Particles/Divisions". 
 

Table 1.1. Example of beam-beam parameter calculation for Gaussian bunch. 
 ξx ξy
RMS Dynamics algorithm 0.001441 0.001441 

Model Beam algorithm 
Rms emittance 0.001439 0.001441 
FWHM emittance 0.001499 0.001542 
30% emittance 0.001393 0.001426 
40% emittance 0.001441 0.001373 
50% emittance 0.00139 0.001453 
60% emittance 0.001385 0.001425 
Via local density, Ncount = 200 
(different realizations of the model particle array) 

0.001497 
0.001456 
0.001332 
0.001459 
0.001438 
0.001384 
0.001424 
0.001339 
0.001547 
0.001276 
0.001314 
0.001394 

 



2. Electron cooling simulation using tabulated friction force values  
 
As soon as no any existing model for friction force calculation from the electron cooling effect 
satisfies and truly describes influence of cooling electrons on ions, the model for the electron cooling 
with direct calculation of binary collisions between real particles was proposed. In this case the 
result of simulation is a table of friction force values for different ion transverse and longitudinal 
velocities. The initial parameters for the modeling must be number of particles, range of studied 
velocities and step over velocities. Calculation of such a tabled is planned with VORPAL code 
developed in Colorado Univ. This code is intended to be calculated in large cluster farm. 
 
In order to optimize the simulation process it was proposed to use BETACOOL code for the 
definition of the table of friction force values and the fastest interpolation method. 
 
Scheme of investigation was the following: with a known analytical model for friction force the 
table was generated and it was assumed as a tabulated one obtained from the direct binary collision 
calculation. Then this table saved to file was used in BETACOOL as one of the model of friction 
force calculation and was compared in rms dynamics simulation to the original analytical one. Result 
obviously depends on the velocity range and number of steps over velocity. So the goal of 
optimization was obtaining the similar results with tabulated and analytical models varying with 
range (or number of ranges) and splitting number in every range, and kind of interpolation over the 
table, simultaneously to minimizing calculation recourses. 
 
2.1. Expected shape of the friction force 
 
General problem of the cooling process simulation using analytical friction force formulae can be 
simply illustrated on example of a semi-empirical formula by Parkhomchuk. In accordance with this 
formula the friction force in magnetized electron beam has a symmetry form for both longitudinal 
and transverse components and can be presented by the following vector equation:  
 

 
( ) 2/32

,
2

42 14

effei

Pe
i

vm
LneZ

vF
∆+

−=
rr

, (2.1) 

 
where ne is the electron density, ∆eff is the effective electron velocity spread with taking into account 
variations of the magnetic field line position in the transverse direction. The ion velocity vi has two 
components – along and across the magnetic field line: 
 
 2

||
2 vvvi += ⊥  (2.2) 

 
The Coulomb logarithm Lp is given by the expression: 
 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ρ+ρ

ρ+ρ+ρ
=

⊥

⊥

min

minmaxlnPL . (2.3) 

 
Where the minimum impact parameter is calculated in accordance with  



 

 2
,

2

2

min
1

effeie vm
Ze

∆+
=ρ , (2.4) 

 

 
eB

cme⊥
⊥

∆
=ρ   (2.5) 

 
is the Larmor radius of electron rotation around the magnetic field line, where  is the rms 
transverse velocity of the electrons. 

⊥∆

 
The maximum impact parameter is calculated as a minimum from three values: 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

τ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ=ρ av

n
Z

i
e

sh ,,3,maxmin 3max . (2.6) 

 
The dynamic shielding radius is calculated using same formula: 
 

 
p

ei
sh

v
ω

∆+
=ρ

22

, (2.7) 

 
Second term describes the distance, which the ion passes inside the electron beam. Here τ is the ion 
time of flight the cooling section in the PRF: 
 

 
c

lcool

βγ
=τ . (2.8) 

 
and the last term is the electron beam radius. 
 
The formula (2.1) well describes the friction force components when the Coulomb logarithm has a 
value of about 10, which corresponds to “good” magnetization. The maximum impact parameter is 
determined by the ion velocity, and minimum one – by the transverse emittance of the electron beam 
and the magnetic field value. When the ratio between maximum and minimum impact parameters is 
about unity, the formula (2.1) as the other formulae deduced in the logarithmic approximation can 
not predict the friction force shape correctly. In this case one needs to provide numerical evaluation 
of the friction force value. To minimize the time of the numerical simulation one needs to optimize 
the mesh parameters in the velocity space. 
 
For instance, the transverse component of the friction force: 
 

 
( ) 2/32

,
2
||

2

42 14

effe

Pe

vvm
LneZ

vF
∆++

−=
⊥

⊥⊥  (2.9) 

 



does not depend on longitudinal component of the ion velocity if 
 
 ⊥<< vv||  (2.10) 
 
and depends of v|| as  
 

 3
||

1~
v

F⊥  (2.11) 

 
in the opposite case. Correspondingly, the mesh step over the longitudinal ion velocity can be larger 
in the region (2.10) and smaller in the other space. In the region (2.10) the friction force dependence 
on the transverse velocity component has three characteristic regions: 

- linear in the range of small velocity, 
- the maximum when the ion velocity is closed to effective electron velocity spread, 

- 2

1~
⊥

⊥ v
F  in the region of high ion velocity. 

Optimum step of the mesh along the transverse component of the ion velocity is different in all these 
intervals. The smallest step value has to be chosen in the range where one can expect inclination of 
real dependence from theoretically predicted. 
 
In principle one can expect peculiarity of the transverse friction force component in the region of 
small ion velocity predicted by Derbenev-Skrinsky formula: 
 

 2

2
||

2

3

42 22
v

vv
mv

LneZ
vF Me −π

−= ⊥
⊥⊥ ,  (2.12) 

 

(here
⊥

=
ρ
ρmaxlnML ) the force can change a sign when ||2vv <⊥ . Correspondingly, step of the mesh 

has to be reduced in this region.  
 
The procedure for the mesh generation described in this report was developed as a first step of the 
mesh structure optimization and requires further development, which will be provided in the second 
stage of the work.  
 
2.2. Interpolation methods 
 
As the simplest interpolation method was chosen linear interpolation when the nearest node for the 
given value is chosen. On the one hand this way is fast enough but it is very rough and gives 
acceptable results when the size of table is huge and very difficult to be processed by program. 
 
The second method is 2D interpolation – so called bilinear [William H. Press et al., Numerical 
Recipes in C, Cambridge university press]: 
In multidimensional interpolation, we seek an estimate of y(x1, x2, . . . , xn) from an n-dimensional 
grid of tabulated values y and n one-dimensional vectors giving the tabulated values of each of the 



independent variables x 1, x2, . . . , xn. We will not here consider the problem of interpolating on a 
mesh that is not Cartesian, i.e., has tabulated function values at “random” points in n-dimensional 
space rather than at the vertices of a rectangular array. For clarity, we will consider explicitly only 
the case of two dimensions, the cases of three or more dimensions being analogous in every way. In 
two dimensions, we imagine that we are given a matrix of functional values ya[1..m][1..n].We are 
also given an array x1a[1..m], and an array x2a[1..n]. The relation of these input quantities to an 
underlying function y(x 1, x2) is  
ya[j][k] = y(x1a[j], x2a[k])  
 
We want to estimate, by interpolation, the function y at some untabulated point (x1, x2). 
An important concept is that of the grid square in which the point (x1, x2) falls, that is, the four  
tabulated points that surround the desired interior point. For convenience, we will number these 
points from 1 to 4, counterclockwise starting from the lower left. More precisely, if 
 
x1a[j] ≤ x1 ≤ x1a[j+1] 
x2a[k] ≤ x2 ≤ x2a[k+1] 
defines j and k, then 
y1 ≡ ya[j][k] 
y2 ≡ ya[j+1][k] 
y3 ≡ ya[j+1][k+1] 
y4 ≡ ya[j][k+1] 
 
The simplest interpolation in two dimensions is bilinear interpolation on the grid square. Its formulas 
are: 
t ≡ (x1 - x1a[j])/(x1a[j+1]- x1a[j]) 
u ≡ (x2 - x2a[k])/(x2a[k+1]- x2a[k]) 
(so that t and u each lie between 0 and 1), and 
y(x1, x2) = (1 - t)(1 - u)y1 + t(1 - u)y2 + tuy3 + (1 - t)uy4  
 
Bilinear interpolation is frequently “close enough for government work.” As the interpolating point 
wanders from grid square to grid square, the interpolated function value changes continuously. 
However, the gradient of the interpolated function changes discontinuously at the boundaries of each 
grid square. 
 
2.3. Description of the numerical procedures and benchmarking results 
 
For testing and comparison of all the models of calculations a special form in the BETACOOL code 
was created where user have a possibility to choose a model for the friction force calculation, type of 
interpolation, and variants of ion velocity range definition (Fig. 2.1). 
 



   
Fig. 2.1. Friction force Form. 

 
File with tabulated force values is saved in specialized format. User can define borders for several 
velocity ranges: 3 point mean 3 ranges – from 0 [m/s] to the 1st point, from the 1st point to the 2nd 
value of velocity, and from the 2nd to the 3rd one (Fig. 2.2). Inside every range the number of steps 
over velocity can be defined. As soon as force dependence is symmetrical of zero value we can take 
into account only positive range of velocities.  

0

0

F

vi

1.36∆e

1 2 3

 
Fig. 2.2. Analytical friction force dependence and defined velocity ranges. 

 
At first such a splitting was intended to make a detailed analysis and splitting in the range 2, where 
there is a peak, which can be incorrectly interpreted with interpolation. This peak theoretically 
corresponds to the so-called effective temperature of the ions and can be easily interpreted in 



velocity units [m/sec]. For the RHIC parameters this value is about 7⋅105 m/sec. The dependence for 
the range 1 (as V) and range 3 (as 1/V2) were well known. In this way we tried to make about 5-10 
splits in the 1st range (from 0 – to 5⋅105 m/s) and (9⋅105 – to the maximal possible ion velocity ~ 
3⋅108 m/s). But for the second range maximal possible splitting was proposed (from 50 to 500 – 
depends on the PC power).  
 
After some investigations the correct tendency for the approach was found: maximal splitting must 
be not in the “uncomfortable” region of the peak, but in the range where the most ion velocity are 
found for the machine parameters, namely transverse ion velocities. For the investigated RHIC 
parameters this region for transverse ion velocity is about 1⋅106 m/s. Here the contribution of the 
velocities is largest to the total friction force value. As soon as transverse velocities are larger than 
longitudinal (~ by two orders of magnitude) they dominate in the final friction force value (both 
velocities contribute to the friction force formula with the same weights). 
Criteria for good coincidence of friction force values obtained with interpolation from table and 
analytically calculated one can use comparison of 3D diagrams for beam r.m.s. growth rate 
dependence in the working range of transverse and longitudinal emittances for RHIC parameters. 
 
During optimization table splitting and velocity range were minimized. As a result reasonable 
conditions for the direct simulation of friction force table were achieved: 
 
1st range of velocities: from 0 to 5⋅103  m/sec with 5 splits 
2nd range of velocities: from 5⋅103  to 8⋅105  m/sec with 20 splits 
3rd range of velocities: from 8⋅105  to 5⋅106  m/sec with 50 splits. 
 
At least for the tested parameters, this suggests that the friction force can be accurately represented 
by approximately 70 x 70 numerical arrays. In other words, about 5000 velocity point calculation 
will be needed with the VOPRAL codes for each set of parameters. To decrease this number one 
needs to develop more appropriate algorithm of the mesh formation. First of all the number of 
divisions and step have to be different in longitudinal and transverse degrees of freedom. 
 
Mentioned above 3D plots for comparison are presented in the Fig. 2.3. 
 
Uniform cylinder 
Analytical formula (Parchomchuk) Bilinear interpolation from the table (par31.fft) 
Transverse cooling rates: 

 
Longitudinal cooling rates: 

Transverse cooling rates: 

 
Longitudinal cooling rates: 



  
Gaussian bunch  
Analytical formula (Parchomchuk) Bilinear interpolation from the table 
Transverse cooling rates: 

 
Longitudinal cooling rates: 

 

Transverse cooling rates: 

 
Longitudinal cooling rates: 

 
Fig. 3.3. Comparison of cooling rates calculated using analytical formula and interpolation of 
tabulated values calculated with the same formula. 
 
At chosen parameters of the mesh the coincidence is good for the electron beam model as an 
uniform cylinder. Difference in the cooling rates at Gaussian bunch reflects the fact, that the friction 
force is the function of transverse co-ordinates in this case. The friction force table was calculated at 
electron density in the centre of the electron bunch, but the density averaged over the ion betatron 
and synchrotron oscillations is sufficiently less. To avoid overestimation of the cooling force one 
needs to calculate the friction force table at some effective electron density, which can be estimated 
by comparison of the results calculated at different densities with the analytical formulae. 



3. Bi-Gaussian model of IBS 
 
As a first step in realization of intrabeam scattering process simulation on the basis of theory by 
G.Parzen the “core – tail” model was improved using bi-Gaussian approximation of the ion 
distribution function. In the frame of the “core-tail” model in the Model Beam algorithm the core 
parameters were calculated using FWHM characteristics of the beam profile, the tail was determined 
as an rms profile width. In general case the model particle distribution function can be presented as a 
sum of two Gaussian functions for core and tail particles: 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−=+=
22

2
1exp

2
1exp)()()(

core
core

tail
tailcoretail

xaxaxfxfxf , (3.1) 

 
where atail, acore, σtail, σcore – amplitudes and widths of beam profile. These parameters can be 
calculated using mean square method. This method minimizes the deviation between the model 
beam profile and Bi-Gaussian distribution: 
 

 , (3.2) [ ] Minimumxfy
N

i
ii →−∑

=1

2)(

 
where (xi, yi) – points of the beam profile distribution, N is total number of profile histogram 
divisions. The optimization problem is solving in the program using Powell method. The same 
procedure is realized for all degrees of freedom: for momentum distribution, horizontal and vertical 
profiles. RMS parameters of the ion beam [ ]ppE yxRMS /,, ∆εε

r
 are calculated in the suggestion that 

distribution of model particles has Gaussian shape. Beam parameters (emittances, momentum 
spread) and particle number of Bi-Gaussian distribution are: 
 

 coretail
core

tail

core

tail
corecoreRMScoretailRMStail NN

a
a

NEEEE −=⎥
⎦

⎤
⎢
⎣

⎡
⋅

σ
σ

+=σ=σ=
−

1,1,,
1

22 rrrr
. (3.3) 

 
The IBS growth rates for core and tail parts of Bi-Gaussian distribution are calculates with standard 
procedure on the base of choosing IBS model for Gaussian distribution: 
 

 
),(.

),(.
NERatesIBSR

NERatesIBSR

corecore

tailtail
rr

rr

=

=
. (3.4) 

 
Model particles in the tail get the kick with standard procedure using of  growth rates. Particles 
in the core get the kick from core and tail heating rates: 

tailR
r

 

 
core

tail
tailtailcorecore E

E
NRNR r

r
rr 22 + . (3.5) 



4. Integration of BETACOOL under UAL framework 
 
The Unified Accelerator Libraries (UAL) provides a modularized environment for applying diverse 
accelerator simulation codes. At this time the object-oriented programs included in UAL are: PAC 
(Platform for Accelerator Codes), ZLIB (Numerical Library for Differential Algebra), TEAPOT 
(Thin Element Program for Optics and Tracking), ACCSIM (Accelerator Simulation Code), ORBIT 
(Objective Ring Beam Injection and Tracking Code). Modules that are partially supported and are 
under active development are ICE (Incoherent and Coherent effects), AIM (Accelerator 
Instrumentation Module), SPINK (tracks polarized particles in circular accelerator), and TIBETAN 
(longitudinal phase space tracking). The Application Programming Interface (API), written in Perl, 
provides a universal shell for integrating and managing all project extensions.  
 
BETACOOL as a program calculating evolution of r.m.s beam parameters in presence of heating 
and cooling effects was successfully implemented into UAL. As soon as BETACOOL has a wide kit 
of different models for heating effects (intrabeam scattering, interaction of two beams, scattering on 
residual gas, etc) and cooling effects (electron cooling, stochastic cooling) all these effects have 
rather complex structure. The task was to organize a simple way to call any model in the frame of 
UAL and to integrate and transfer all internal parameters which BETACOOL operates with 
including initial parameters into UAL global scope.  
 
BETACOOL uses a lot of parameters for any effect model, they are initial parameters of the 
beam(s), ring structure, lattices, parameters for the effect calculation itself, etc., and a kit of internal 
parameters which are temporary calculated. It is necessary to integrate them into UAL or initialize 
some of them from UAL variables. 
 
The obvious advantage of BETACOOL implementation is object oriented method of the program 
code. In order to use some procedures and functions from BETACOOL effects calculation was 
proposed library-like scheme. Program code is compiled and linked to the library and special 
program-adaptor must be created using UAL interface which will contain so called “bridge” 
functions which let to use BETACOOL possibilities for effects simulation in the UAL framework. 
 
4.1. Library realization and adaptor scheme 
 
BETACOOL library is created as shared library libUalBetacool.so under Linux OS with a help of 
gcc compiler. This library is created in a standard way, we used a make utility. 
 
To use all the BETACOOL functions it is necessary to make a linkage to BETACOOL header files 
where all the objects and functions are declared (here #include is to the folder where all 
BETACOOL headers are): 
 
// Betacool classes 
#include "..\include\xdynamic.h" 
 
we made #include only to one BETACOOL header file because all others are included from it. 
 
Two adaptors are created for now. One of them is declared and described in files Ring.hh, Ring.cc.  



 
This adaptor connects all the BETACOOL parameters with UAL internal variables. It creates an 
object of specially declared class Ring. When this object is created it uses a standard BETACOOL 
input file (of *.bld type) as a parameters of initialization, where all the simulation parameters are 
described. User must edit this file and set parameters in accordance with simulation task.  
 
// Constructor 
BETACOOL::Ring::Ring(std::string& fileName) 
{ 
  char fn[120]; 
  strcpy(fn, fileName.c_str()); 
  xData::Get(fn); // read file of parameters and initialization of Betacool objects 
  xData::Set(fn); // more initialization of Betacool objects and save file of parameters 
} 
 
This constructor uses standard BETACOOL functions xData::Set() and xData::Get() for setting 
internal parameters. These functions load input file, organize a special data array inside 
BETACOOL framework and set its elements in accordance with a parameter file, where the 
coincidence between BETACOOL data array and parameters name is specialized.  
 
Calling of any BETACOOL parameters is possible via global BETACOOL objects, which are 
declared in xdynamic.h file. Here is a list of these objects: 

 
iDraw 
iBeam 
iRing 
iTime 
iTaskRates 
iDynamics 
iEcool 
iForce 
iEbeam 
iIBS 
iLosses 
iHeat 
iTarget 
iRestGas 
iColl 
iStochastic 
 
A special function is foreseen in the described adaptor file, inside class Ring. It lets to fill the ring 
lattices in the BETACOOL array of variables with lattices from UAL which are calculated by one of 
the program in the UAL framework. This function creates an array of optic elements from the optic 
structure calculated in UAL.  

 
/* Calculates twiss parameters and sets Ring containers */ 



    void build(const char* latticeName); 
 
When tracking of lattices is completed by UAL tool and they are stored in dedicated array (here in 
example vtwiss), they can be transferred to BETACOOL ring elements setting the kit of lattices for 
every element in accordance with the lattices calculated by another library of UAL (for example 
TEAPOT): 
 
// Start the initialization of Betacool_Ring 
 
  iRing.Number(vtwiss.size()-1); 
  iRing.Arc = 0; 
  for(int j = 0; j < vtwiss.size()-1; j++){ 
    iRing[j].EL_LATTICE = true; 
    iRing[j].Length = m_lattice[j+1].getLength(); 
    iRing.Arc += iRing[j].Length; 
    iRing[j].Lattice.dist  = iRing.Arc; 
    iRing[j].Lattice.betax = vtwiss[j].beta(0); 
    iRing[j].Lattice.betay = vtwiss[j].beta(1); 
    iRing[j].Lattice.alfax = vtwiss[j].alpha(0); 
    iRing[j].Lattice.alfay = vtwiss[j].alpha(1); 
    iRing[j].Lattice.Dx = vtwiss[j].d(0); 
    iRing[j].Lattice.Dy = vtwiss[j].d(1); 
    iRing[j].Lattice.Dpx = vtwiss[j].dp(0); 
    iRing[j].Lattice.Dpy = vtwiss[j].dp(1); 
 
The second adaptor file (CompositeTracker.cc, CompositeTracker.h) contains description of few 
functions, which let to change beam parameters due to active effects influence using BETACOOL 
simulation models.  
 
Here special class CompositeTracker is organized. The main function described here makes tracking 
of the particle beam through effects: 
 
void BETACOOL::CompositeTracker::propagate(PAC::Bunch& bunch) 
{ 
  readBunch(bunch); 
  iBeam.Emit = iBeam.Get_Emit(iRing.LATTICE); 
  iDynamics.Drawing(iRing.LATTICE); 
  xLattice Lattice2 = iRing.LATTICE; 
  for (int i = 0; i < xEffect::ACount; i++) 
  { 
    if (xEffect::AItems[i]->Use) 
    { 
      transRotate(Lattice2, xEffect::AItems[i]->Lattice); 
      addKick(i); 
      Lattice2 = xEffect::AItems[i]->Lattice; 
    } 
  } 



  transRotate(Lattice2, iRing.LATTICE); 
  longRotate(); 
  ++iTime; 
  writeBunch(bunch); 
} 
 
It uses the following functions, which are created in adaptor file and use internal BETACOOL 
procedures: 
 
 - readBunch() – creates a bunch of particles (BETACOOL object) as an array, in accordance with 
number of model particles, and fills coordinates of every particles from real coordinates, calculated 
in and taken from UAL; 
 
 - iBeam.Get_Emit – calculates beam emittance accordingly to obtained coordinates and matched to 
the current element lattices; 
 - addKick() – calculates momentum deviation from the active effect (if such) in accordance with 
BETACOOL algorithm of Model Beam; 
 
 - transRotate() – propagates particles through optic element – changes particle transverse 
coordinates with the help of the element transformation matrix. Transformation matrix is calculated 
in the area between lattices, which are parameters of the function; 
 
 - longRotate() – rotates bunch in longitudinal phase space; 
 
 - write bunch () – takes back changed array of particles to the UAL framework. 
 
Two additional functions are also declared in adaptor file.  
First of them allows setting lattices for any point of “BETACOOL ring” from the UAL array of 
lattices: 
 
  ModelBeamTracker.setLattice(twiss); 
 
The second function has two parameters: name of effect, and lattices in the point where this effect is 
located. Function checks if such an effect is considered in BETACOOL initial parameters and if 
found sets lattices there in accordance with UAL calculation:  
 
  ModelBeamTracker.registerEffect("XADDHEAT", "clock8"); 
 
Here in adaptor file user can add in accordance with class CompositeTracker syntax any other 
function where can be used BETACOOL tools. 
 
4.2. User program and usage of adaptors and library 
 
To use adaptor functions with BETACOOL library user must follow next 2 steps: 
 



1. Compile and link his own code with include of path to the library: libUalBetacool.so and 
BETACOOL header files. It can be done during the assembly of the executable user file with the 
following instructions in Makefile: 
 
Include library instruction: -L ../lib/ -lUalBetacool 
Include instruction: -I. -I../lib/ 
 
2. In user’s own program code it is necessary to make #include instructions to BETACOOL headers 
and to the header file of adaptor: 
 
#include "CompositeTracker.hh"       // Adaptor reference 
#include "Ring.hh"          // Adaptor reference 
#include "xdynamic.h"      // Betacool reference 
 
Then the usage of adaptor and library to calculate effects from any of BETACOOL models is simply 
calling for functions: 
 
//--------------------------------------------------------------------------- 
  std::cout << "START BETACOOL " << std::endl; 
//--------------------------------------------------------------------------- 
 
// read BETACOOL input file  
BETACOOL::Ring& theRing = BETACOOL::Ring::getInstance("rhicfodo.bld");  
 
// set BETACOOL Lattices from UAL 
 theRing.build(ring.c_str());                                            
 std::cout << "Lattice Number = " << iRing.Number() << ", Circumference = " << iRing.Circ() 
<< std::endl; 
 
// calculate growth rates from BETACOOL Effects 
vectorU Rates = xEffect::Summary(iTime, iBeam, iRing);                 
 std::cout << "Rates [Ex, Ey, dP/P, N] = " << Rates[0]() << ", " << Rates[1]() << ", " << 
Rates[2]() << ", " << Rates[3]() << std::endl; 
 
// Constructor for beam propagation object 
BETACOOL::CompositeTracker ModelBeamTracker; 
 
// set time step  
ModelBeamTracker.setTimeStep(iDynamics.IntegrationStep());   
 
// set lattice in start point  
ModelBeamTracker.setLattice(twiss);                          
 
// reset Lattice of Betacool Effect from UAL twiss 
ModelBeamTracker.registerEffect("XADDHEAT", "clock8");       
 



// Overwrite UAL bunch with the Gaussian distribution from Betacool 
iDynamics.Distribution(iRing.LATTICE, false); ModelBeamTracker.writeBunch(bunch); 
 
int istep = 0; 
 
while(true) 
  { 
  // set time step 
  ModelBeamTracker.setTimeStep(iDynamics.IntegrationStep());    
   
// kicks from Betacool Effects (IBS, Ecool, ...) 
  ModelBeamTracker.propagate(bunch);   
}                          
 
 


	Interim report
	Software development for electron cooling calculation
	Abstract

